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Abstract—C-2 Methylene glycosides were synthesized from C-2 propargyloxymethyl glycals in a stereoselective manner using a cata-
lytic quantity of AuCl3. The Au-catalyzed reaction was explored using various aglycones. The current protocol enables the prepa-
ration of C-2 methylene glycosides, tolerates diverse functional groups and is fast, catalytic and mild.
� 2007 Elsevier Ltd. All rights reserved.
2-C-Methylene glycosides are important intermediates
for the synthesis of various biologically important small
molecules.1 For example, Matsuda et al. identified2a that
the 2 0-C-methylene group of 2 0-C-methylene nucleosides
is essential for the inactivation of the ribonucleotide
phosphate reductase enzyme which is involved in
tumour progression.2,3 Booma and Balasubramanian
reported the first approach for the synthesis of C-2
methylene glycosides from C-2-acetoxymethylene glycal
based on a Ferrier reaction using BF3ÆEt2O as a
catalyst.3a A subsequent study3b employed Nafion-H,
Montmorillonite K-10 or Pd(PPh3)4 to effect similar
transformations to obtain C-2 methylene glycosides.
More recently, Ghosh et al. reported3c the InCl3-medi-
ated preparation of these compounds. Our programme
to synthesize diverse molecular architectures from car-
bohydrate precursors led us to synthesize C-2 methylene
glycosides to exploit their salient features for the devel-
opment of a diversity oriented synthesis pathway.4

We have recently identified that the propargyloxy group
behaves as a leaving group when treated with a catalytic
amount of AuCl3.5a Extrapolation of these observations
led to the recognition of a transglycosylation protocol
from propargyl glycosides.5b In continuation, we dis-
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close in this Letter, the utility of AuCl3 for the prepara-
tion of 2-C-methylene glycosides from per-O-benzylated
C-2-propargyloxymethyl glycals in the presence of
aglycones.

Our efforts started with the preparation of known C-2
hydroxymethyl glucal from C-2 formyl glucal 1.6a The
resulting primary hydroxyl group was easily etherified
to obtain enyne 2 using NaH/propargyl bromide in
the presence of nBu4N+I�in 87% yield. Enyne 2 was
subjected to AuCl3-mediated SN2 0 addition in methanol
at 0 �C–rt to afford the exomethylene compound 3a in
63% yield supporting further the behaviour of the prop-
argyloxy group in the presence of AuCl3.7–9

The 1H NMR spectrum of 3a revealed the absence of an
acetylenic methine proton at d 2.38 ppm and the pres-
ence of proton resonances characteristic with an exo-
methylene group around d 5.15–5.31 ppm. The 13C
NMR spectrum of 3a also confirmed the presence of
an olefin showing a resonance at d 110.7 ppm and
the DEPT spectrum further confirmed this signal as a
–CH2. In addition, the anomeric carbon was identified
at d 102.4 ppm confirming the product as an a-glucoside
and the overall spectroscopic data were in agreement
with that reported by Booma et al.3a,7,9

To test the general applicability of the methodology, we
carried out the AuCl3-mediated SN2 0 addition reaction
utilizing various aglycones comprising aromatic, ali-
phatic, alicyclic and carbohydrate-derived alcohols
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Scheme 1. Au-catalyzed synthesis of a range of C-2 methylene a-DD-glucosides.

Table 1. Synthesis of C-2 methylene glycosidesa
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a All reactions were performed in parallel at 0 �C–rt for 16 h.
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(3b–3h). It is pertinent to mention that the current method
tolerates functional groups such as olefins (3c, 3e), iso-
propylidene (3e and 3f), azide 3g and ethers 3h (Scheme
1). The stereoselective formation of a-glycosides can be
attributed to the anomeric effect though a thorough
mechanistic investigation is pending.
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In addition, we have also shown that the per-O-benzyl-
ated C-2-propargyloxymethyl galactal 4 and per-O-
benzylated C-2-propargyloxymethyl xylal 6 also react
with aglycones to give the corresponding C-2 methylene
galactosides and xylosides, respectively, in a stereoselec-
tive manner (Table 1). For example, galactal and xylal-
derived enynes (4 and 6) reacted with pentenyl alcohol
to give C-2 methylene-containing pentenyl galactoside
5a and C-2 methylene-bearing pentenyl xylopyranoside
7a in 68% and 60% yields, respectively.7 It is interesting
to note that alicyclic (Table 1, entry 2) and sugar-derived
aglycones (Table 1, entries 3–5) also reacted with enyne
4 to give the corresponding galactosides (5b–5e).7

In summary, we have synthesized C-2 methylene glyco-
sides from stable propargyloxymethyl glycals exploiting
gold catalysis. The current protocol enables the activa-
tion of an alkyne group in the presence of various func-
tional groups. Our efforts in utilizing these glycosides
possessing an exomethylene group at the C-2 position
for the preparation of diverse molecular skeletons will
be reported in the future.
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